Phenyl and Biphenyl Molecular Metaphors in Drug Design

Nicholas A. Meanwell

Baruch S. Blumberg Institute
NuArq MedChem Consulting LLC

Baruch S. Blumberg Institute Tuesday, May 9th, 2023

Outline

- Background
 - prevalence of rings in drugs
 - marketed natural products with phenyl rings
- Compound attrition and molecular complexity
 - higher Fsp³ count associated with marketed drugs
- Inverse relationship between # of rings & drug developability
 - phenyl rings believed to be the problem
- Phenyl ring replacements
 - some geometrical properties
- Phenyl ring isosteres to solve developability problems
 - parameter optimization
- Replacements for terminal phenyl rings
 - select examples from the literature
- Replacements for scaffolding phenyl rings
 - heterocycle pedigrees
 - para topology
 - meta topology
 - ortho topology
- Conclusion

Phenyl Rings: Prevalence in Marketed Drugs

- ◆ 1175 FDA-approved drugs up to January 2014
 - 6 membered rings the most prevalent topology - 767 examples (65%); 1029 in 2020 dataset
- ◆ Benzene is the most common ring
 - 538 examples (46%); 727 in 2020
- ◆ Pyridine is the 2nd most prevalent ring
 - 54 examples (4.6%); 86 in 2020
 - similar prevalence to piperidine and piperazine
- Phenyl rings are common in Nature
 - component of morphine & aspirin
 - present in penicillin G

- Ph rings deployed as scaffolds or pharmacophores
 - 200 years of synthetic organic chemistry
 - straightforward to decorate
 - no complications from chirality
- Scaffold effects
 - exit vectors confer versatility
 - allows for multiple combinations
- Pharmacophore
 - well-established substituent interrelationships
 - electronic, lipophilic effects of substituents
 - Hansch QSAR, Topliss tree, pCl-phenyl

Ring Count, Planarity & Developability

- ◆ cLog *P* & Log *D* increase, & solubility decreases with increasing aromatic ring count
 - HSA binding, CYP 3A4 inhibition ↑; hERG inhibition shows a hump function
- ◆ Carboaromatic rings determined to be the most problematic in promoting these trends
 - phenyl rings are often deployed indiscriminately: potency can be driven by entropic effects
- ◆ Ph ring should bring 460x ↑ in potency to maintain 0.3 LLE_{AT} value
 - a benzyl moiety requires ~900x ↑ in potency
- ◆ Mean Fsp³ count increases with development stage
 - attrition of planar aromatic compounds
- Property Forecast Index (PFI) predicts many developability challenges

PFI = Chrom Log $D_{pH7.4}$ + #Ar or iPFI = Chrom Log P + #Ar

Phenyl Isosteres & Compound Optimization

Property	Optimization Parameter		
Molecular Properties	Shape & conformation of a molecule, aromatic ring count, Fsp ³ value, introduce a H-bond acceptor (HBA) or donor (HBD)		
Physicochemical Parameters	Lipophilicity, basicity, modulating melting point, dissolution rate, aqueous solubility, membrane permeability		
Pharmacological Parameters	In vitro biochemical potency, cellular potency, selectivity against target isoforms, genotype coverage, promiscuity, in vivo efficacy		
ADME/PK Parameters	Metabolic stability, plasma exposure, volume of distribution, half-life, clearance, CYP450 inhibition, pregnane X receptor (PXR) liability, plasma protein binding, oral bioavailability		
Safety and Toxicity Parameters	CYP450 time-dependent inhibition (TDI), reactive metabolite formation, hepatotoxicity, phototoxicity, phospholipidosis, mutagenicity, hERG inhibition & other CV liabilities, DNA binding		
Other Parameters	Structural diversity, new bioisostere design		

- ◆ Bioisosteres of phenyl rings have shown the potential to address a range of developability challenges
 - improved solubility, metabolic stability; removal of toxicophores are common examples
- Effect of isosteric replacement on biological activity varies
 - bioisosterism is contextual, dependent on the biochemical target & the role of the phenyl ring

Phenyl Mimic Vectors and Geometric Parameters

- Azines, other 6 membered rings, some bicycles are the most conservative isosteres
 - closely recapitulate exit vectors for ortho-, meta-, para-substitution
- ◆ Azoles, bicycles offer altered exit vectors that allow for flexibility
 - other ring systems offer unique vectors & properties

Replacements for Terminal Phenyl Rings

Azines as Terminal Phenyl Replacements: HCV NS5B Inhibitors

									_
	Lead		Bioisosteric analogue						
	Ph	2-Py	3-Py	4-Py	3-Pd	4-Pm	2-Pz	2-Pm	
HCV replicon GT-1a/1b/1b C316N EC ₅₀ (nM)	2.1/1.3/35	2.8/1.9/55	17/2.2/193	8.3/0.83/63	17/2.9/139	13/1.9/109	15/2.6/308	2.3/1.0/51	
cLog P	6.28	5.44	5.05	5.05	4.49	4.77	4.22	4.83	
CYP 3A4 IC ₅₀ (µM)	2.1	4.1	0.063	0.073				11.4	
% remaining (HLM/RLM)	68/39	89/82	0.7/0.6	11/11			* t _{1/2} (min)	>120*/86*	

ı	2-Pm	BMS-929075
	2.3/1.0/51	9/4/18
	4.83	4.98
	11.4	>13
	>120*/86*	>120*/120*

- ◆ Potent allosteric HCV NS5B inhibitors
 - highly lipophilic, CYP 3A4 inhibition; moderate LM stability
- Systematically replaces terminal phenyl ring with azines
 - all reduced cLog P; potency toward C316N mutant varied
 - pyridines with exposed N associated with CYP 3A4 inhibition
 - preferred conformation may reduce N exposure in 2-isomer

- Pyrimidine optimal azine in this series
 - reduced CYP 3A4 inhibition
 - improved HLM/RLM stability
- ◆ CYP 3A4 inhibition not an issue with F-homologue
 - BMS-929075 advanced into clinical trials
 - doses of ≥25 mg gave 10x EC₅₀ vs C316N mutant C₂₄

Impact ↓ cLog *P* ↓ CYP450 inhibition

↑ metabolic stability

Terminal Phenyl Replacements in CDK9 Inhibitors

	Lead	Bioisosteri	c analogue
cis-cyclohexane is a phenyl replacement	N H O N O N O H	N H O N H	CI—N H O N O N H
CDK9 IC ₅₀	29 nM	29 nM	4 nM
pSer2 cell IC ₅₀	130 nM	150 nM	13.4 nM
Log D _{7.4}	3.0	2.8	3.8
Sol. (µM)	33	970	150
Rat hepatocytes Cl _{int} (µL/min/10 ⁶ cells)	58	45	73
HLM Cl _{int} (µL/min/mg)		<3	50

Impact

↑ biochemical & cell

potency;

↑ solubility

- CDK9 inhibitor for hematological malignancies
 - IV administration & short t_{1/2} to mitigate tox.
 - poor solubility of lead precluded IV dosing
- ◆ Replaced phenyl ring with azole isosteres
 - a substituted imidazole improved solubility
 - but potency reduced 10x
- Fused pyrazole offered potency & solubility
 - presents a relatively planar topography
 - 1.5 Å longer than a phenyl ring; comparable to anisole
- CI enhances potency, reduces metabolic stability in HLM
 - modulates conformation; increases lipophilicity ($\pi = 0.71$)
 - fused ring is the site of metabolism
 - hydroxylation of CH₂ adjacent to N
- ◆ AZD4573 currently in clinical trials for hematological malignancies

Terminal Phenyl (Phenol) Replacement in EGFR

- ◆ Sought allosteric Type III inhibitors of EGFR kinase
 - 4th generation inhibitor
 - to overcome resistance to Type I & Type II inhibitors
- ◆ EGFR activating L858R mutation
 - 90% of patients with NSCLC
- Osimertinib is a 3rd generation inhibitor
 - C797S mutation abrogates Michael addition
- ◆ Pyrazole to replace PhOH
 - preserves H-bond donor: poorly active
- ◆ Added CH₃'s to expand size
 - even weaker potency
- ◆ Incorporated into cyclopentane
 - to avoid steric interaction with amide
 - amide engages Asp₈₅₅
 - 435x enhanced potency
 - pyrazole tautomerism allows Phe₈₅₆ π interaction
- ◆ Evolution to pyrrolo[1,2-c]imidazole
 - C-H bond donor

Terminal Phenyl Mimics in DPP4 Inhibitors & GR Agonists

		_ead	Bioisosteric analogue					
	Ph FCH ₂ -Ph		CH ₃ -Py	FCH ₂ -Py	carmegliptin			
DPP-IV IC ₅₀ (nM)	4.6	0.5	19	1.2	6.8			
Log D _{7.4}	1.3	1.6	0.3	0.1	0.5			
In vitro PL* (µM)	2.5 NT		15 NT		>20			
*Lowest concentration	*Lowest concentration at which phospholipidosis is induced in cultured fibroblasts: NT - not tested							

Impact ↓ brain penetration ↓ potential for phospholipidosis ↓ lipophilicity

- Glucocorticoid receptor (NHR) allosteric agonist
 - treatment of inflammatory diseases
 - rheumatoid arthritis, respiratory tract disorders
- Sought partial agonists to avoid side effects
 - based on experience with SERMs
- Poor intrinsic aqueous solubility
 - indazole N-F-phenyl replacements explored
 - sought to reduce cLog P, enhance solubility
- ◆ Isothiazole & 2-MeO-pyridine reduced potency
 - cell effects poor
- ♦ N-Me pyridone optimal
 - potent partial agonist
 - solubility improved100x over MeO-pyridine
 - cLog P reduced by 2.3 units from F-Ph
- ◆ AZD9567 in clinical trials: QD drug
 - improved profile compared to prednisolone

- Potent DDP4 inhibitor
 - treatment of diabetes
- Phenyl lead subject to high clearance in rats
 - high V_d & undesirable CNS penetrance
 - amphipathic compound: phospholipidosis in vitro
- ◆ CH₃ to F-CH₂ enhanced potency 10x
 - F-CH₂-Py +ve in an Ames assay
- Sought to replace the aromatic ring
 - pyrrolidinone gave carmegliptin
 - C=O: Asn₇₁₀ NH₂, Arg₁₂₅ dual H-bond interactions

	Lead		Bioisost	eric analogue	AZD9567
P F H N R	F	N S	S N	N	N
GR IC ₅₀ (nM)	<14	52	NT	57	3.8
Cell TR EC ₅₀ (nM)/% eff.	< 0.34/92	3.3/71	39/31	40% at 1 µM	7/87
Solubility (µM)	<0.08	5.8	0.96	<0.5	55
cLog P	6.7	5.1	5.4	6.0	4.4

Impact

↓ lipophilicity↑ solubility↑ potency

Pyridone

↑ potency 15x

↑ cell >200x

↑ soly. >100x

↓ cLog P 1.6

Cyclohexyl as a Terminal Phenyl Bioisostere

- Phenyl rings prevalent in drug design
 - frequently associated with π - π stacking interactions
- ◆ Matched pairs analysis: compared phenyl with cyclohexane
 - sampled the Merck, Amgen and BindingDB databases
 - 11021, 1341 and 2468 matched pairs, respectively
- ◆ For 36-45%, potency within 2-fold
 - for 25-39%, Ph ≥2-fold more potent
 - for 25-30%, cyclohexyl ≥2-fold more potent
- Examined examples in each category
 - only where X-ray cocrystal data available
 - phenyl & cyclohexyl can engage in similar types of stacking interactions
 - challenges a long-held assumption
- ◆ Replacing a phenyl with cyclohexyl will increase Fsp³
 - but.... also increases Log P by ~0.5 units
 - other adjustments may be required

AKT1 inhibitor

C14 Cyclohexyl

0.386

Cyclopropyl as Terminal Phenyl Mimic: MEK, BACE-1 Inhibitors

HN N O >	CI	HN	N O R	*	HN N O
lead Fsp ³ = 0.09	C ₆	C ₅	C ₄	C ₃	optimized lead (OL) $Fsp^3 = 0.29$

	Hit	Lead	Trametinib
ACHN cell IC ₅₀ (nM)	4800	1270	9.8
HT-29 cell IC ₅₀ (nM)	990	100	0.57
cLog P	6.3	5.0	5.0

Impact

↑ cell potency

↓ hydrophobicity

- ◆ MEK inhibitor with high cLog P
 - systematic study of the 3 aryl rings
 - cyclopropyl at imide N offered improved cell-based potency
 - alkyl groups at N-1 reduced potency
- ◆ Further modification gave trametinib
 - high melting polymorph formed
 - gave solubility/dissolution-limited absorption
 - DMSO solvate conferred targeted pharmaceutical properties
 - approved by FDA in 2013 for V600E mutated metastatic melanoma

	Lead		Bioisos	steric a	nalogue	
	Ph	C ₆	C ₅	$C_{\mathtt{4}}$	C ₃	OL
BACE1 K _i (nM)	3300	470	470	110	47	5.4
$Aβ40 IC_{50} (μM)$		11	6.9	2.8	1.9	0.082
cLog P		5.4	4.9	4.3	3.8	2.4

Impact

↑ biochemical potency

↓ cLog P

↑ Fsp³

- ◆ BACE1 inhibitors
 - all 4 cycloalkyl analogues offered improved enzyme & cell potency
 - additional optimization of *m*-Cl-phenyl ring gave optimized lead

Oxygenated Heterocycles as Terminal Phenyl Mimics

	Lead	Bioisosteric analogue				
	F-Ph	Py Fu Dioxp D				
hGlyT1 <i>K</i> _i (nM)	4	3	24	2	2	
Efflux ratio	0.7	8.0	ND	0.9	1.1	
Free B/P ratio in rat	1.3	1.0	ND	0.5	0.4	
LM Cl _{int,u} (L/hr/kg) human rat	227 328	23 41	17 36	19 30	6 8	
cLog P	4	2.4	2	0.6	0	

- Glycine transporter (GlyT1) inhibitors
 - phenyl lead had high clearance in HLM & RLM; rats
- Dioxane substituted effectively for Ph
 - ↓ Log *P*; ↓ clearance in HLM & RLM
 - orally bioavailable in rat: F = 35%
 - | efflux ratio compared to several analogues studied
 - reasonable CNS penetrance maintained
- ◆ Dioxane incubated at pH = 1 in aqueous solution
 - stable for several days

Impact ↓ cLog P liver selectivity

- Prolyl hydroxylase (PHD) inhibitors
 - ↓ cLog P
 - ↓ permeability
 - uptake by OATP
 - liver selective

OH O N CO ₂ H H CF ₃	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
systemically active lead inhibitor of hypoxia-inducible factor prolyl hydroxylase	liver-selective analogue targets OATP

Impact
↓ lipophilicity
intrinsic clearance in
RLM & HLM

	Lead	Bioisostere
PHD1/2/3 EC ₅₀ (nM)	3.2/4.8/16	3.6/4.9/8.2
cLog P	2.3	1.0
P _{app} (*10 ⁻⁶ cm/s)	16	4.2
Liver/plasma ratio	3.6	16

- Cat K
 ↓ Log D; ↑ LLE
 ↑ solubility
 ↓ hERG inhibition
- Lead Bioisosteric analogue Ph Cyp Py **DiMePy** Cat K pIC₅₀ (nM) 8.0 7.9 7.6 7.9 $Log D_{74}(LLE)$ 2.6(5.4)>3.0 <4.9) 1.4 (6.2) 2.4 (5.5) hERG pIC₅₀ 5.1 <4.0 <4.0 1000 Sol. at pH 7.4 (µM) >3600 1700 HLM (µL/min/kg) < 2.0 < 2.4 33

Terminal Phenyl Mimics: γ-Secretase & PKC-θ Inhibitors

	Lead	Bioisostere
	F ₃ -Ph	Thd
h IC ₅₀ Aβ42 total/free (nM)	4.5/1	21/12
Mouse IC ₅₀ total/free (nM)	4/0.9	9/5
<i>in vivo</i> remaining %Aβ42 @ 1/3/10 mg/kg PO	56/27/22	59/33/15
Log D	4.14	3.17
Solubility (µg/mL)	3	198
PPB f.u. (h/m) (%)	0.4/0.3	2.8/10.1
IC ₅₀ UVA (µM)	1.67	443
Cl heps (h/m): (µL/min/Mcells)	6.6/5.4	1.3/1.4
hERG IC ₅₀ (µM)	<2	>10

Impact ↓ phototoxicity risk ↓ lipophilicity ↑ solubility ↓ plasma protein binding ↓ protein covalent binding ↓ hERG inhibition

- PKC-θ inhibitors
 - CF₃, OCH₃, O-tBu poor substitutes for phenyl
 - CF(CH₃)₂ 3-fold more potent than Ph
- ◆ O-CH₂-CHF₂ exhibits comparable potency to phenyl
 - potency enhanced 10x by methylation
- ◆ CC90005 selected for clinical evaluation
 - highly selective over PKC-δ and 456 other kinases

- γ-Secretase modulators: phototoxicity issue
 - CF₃-phenyl moiety replaced by a CF₃-CH₂-O
 - ↓ Log *D*, ↑ solubility; ↓ phototoxicity, PCB, hERG risks

Replacements for Phenyl Ring Scaffolds

Heterocycles as Phenyl Mimics: Metabolic Stability

- ◆ Heterocycle replacements for a phenyl ring with higher metabolic stability
 - molecular matched pairs analysis
 - 2323 pairs evaluated with 1,2-, 1,3- & 1,4-topologies examined
 - piperazine the sole saturated ring examined in 1,4 relationship
- ◆ 1,2-topology: furan, thiophene performed poorly; pyrrole a neutral transform

◆ 1,3-topology: 5-membered heterocycles generally performed well
 - (3,5)-1*H*-1,2,4,-triazole & (2,4)-1*H*-imidazole best; (3,5)-pyrazine poor

◆ 1,4-topology: 2,5-dipyrazine the best azine; pyridazine & piperazine good
 - (2,5)-1*H*-imidazole poor

1,2-	Mean Δ*
(4,5)-1 <i>H</i> -triazole	0.97
(4,5)-1 <i>H</i> -pyrazole	0.73
(4,5)-1 <i>H</i> -imidazole	0.65
(4,5)-1,2,3-thiadiazole	0.64
2,3-furan	-0.07
2,3-1 <i>H</i> -pyrrole	-0.01
2,3-thiophene	-0.12
(2,3)-pyrazine	0.35
(4,5)-pyrimidine	0.33
(2,3)-pyridine	0.20
(3,4)-pyridine	0.15

1,4-	Mean Δ*
(2,5)-1,3,4-thiadiazole	0.65
(2,4)-1 <i>H</i> -imidazole	0.64
(2,5)-1,3,4-oxadiazole	0.45
(2,5)-1 <i>H</i> -imidazole	-0.33
(2,5)-pyrazine	0.46
(3,6)-pyridazine	0.25
(2,5)-pyrimidine	0.19
(2,5)-pyridine	0.11
N,N-piperazine	0.30

1,3-	Mean Δ*
(3,5)-1 <i>H</i> -1,2,4-triazole	0.91
(2,4)-1 <i>H</i> -imidazole	0.87
(2,4)-oxazole	0.80
(2,5)-1,3,4-oxadiazole	0.62
(2,5)-oxazole	0.59
(3,5)-isoxazole	0.47
(3,5)-1,2,4-oxadiazole	0.39
(2,5)-oxazole	0.12
(2,4)-thiazole	0.04
(2,6)-pyrimidine	0.43
(2,4)-pyrimidine	0.10
(2,4)-pyridine	0.23
(2,6)-pyridine	0.17
(3,5)-pyridine	0.14
(3,5)-pyrazine	-0.19

*Mean(Δ(log₁₀ Mean Cl_{ints} for transform))

Heterocycles Have Different Pedigrees

- Heterocycles are a mainstay of drug design
 - 5- & 6-membered rings common scaffolds
 - can address a range of problems
- Key properties:
 - can be basic: pyridine, imidazole, triazole,
 - H-bond acceptor
 - H-bond donor: N-H, O-H, C-H
 - electron withdrawing properties, dipoles
- Heterocycle properties readily modulated
 - effect of substituents on heterocycle
 - reciprocal effects on substituent
- Heterocycle identity will modulate effects
 - impact on geometry, conformation & potency
- Silhouettes similar (distorted by presence of S)
 - but.... properties can be very different
 - electronic
 - physicochemical
 - biological
 - developability
 - 1,3,4-oxadiazoles vs 1,2,4-isomers
 - pyridazines vs pyridines

	10,073	9,160	8,337	
Heteroaromatic	Solubility	HSA binding	P450 inhib.	Combined score
Pyridazine 1.4%	3	3	3	3.0
Pyrazine 1.0%	2	3	3	2.7
Imidazole 6.22%	3	3	2	2.7
Pyrazole 17.2%	2	3	3	2.7
1,3,4-Oxadiazole ()	8% 3	2	2	2.3
1,2,4-Triazole 2%	3	1	2	2.0
Furan 1.7%	2	2	2	2.0
Pyrimidine 16.6%	2	2	2	2.0
Oxazole 2.5%	2	2	2	2.0 m
Pyrrole 7.9%	2	2	2	2.0
Pyridine 17.6%	2	3	1	2.0
1,2,4-Oxadiazole 1	67% 2	1	3	2.0
1,3,5-Triazine 0.6%	1	2	2	1.7
1,3,4-Thiadiazole4.	95% 1	1	3	1.7
Isoxazole 3.8%	2	2	1	1.7
Tetrazole 0.9%	3	1	1	1.7
1,2,3-Triazole 3.5%	1	2	1	1.3
Thiazole 6.4%	1	1	2	1.3
Thiophene 3.58%	1	2	1	1.3

% of 10,073

nPr calc.	pK _{BHX} nPr
O N S O Ph	0 N S N Ph
1,3,4	1,2,4 0.5
Log <i>D</i> = 2.2 Sol. = 81 μM	Log <i>D</i> = 3.1 Sol. = 5 μM
stronger calcd. dipole: 3.37 <i>D</i> stronger H-bond acceptor	calcd. dipole: 1.48 D

Heteroaliphatic	Solubility	HSA binding	P450 inhib.	Combined score
Piperidine NH	3	3	3	3.0
Morpholine NAIk	3	3	3	3.0
Imidazolidine	2	3	3	2.7
Piperidine NAIk	2	2	3	2.3
Pyrrolidine NAr	2	2	3	2.3
Piperazine	2	2	2	2.0
Morpholine NAr	2	2	2	2.0
Pyrrolidine NCO	2	2	2	2.0
Piperidine NAr	2	2	2	2.0
Piperidine NCO	2	2	1	1.7
Tetrahydrofuran	1	2	2	1.7
Pyrrolidine NAIk	2	2	1	1.7
Morpholine NSO2	2	1	2	1.7
1,3-Thiazolidine	1	1	1	1.0
Pyrrolidine NSO2	1	1	1	1.0
Piperidine NSO2	1	1	1	1.0

para-Substituted Phenyl Mimetics

Phenyl Mimics: Cyclohexanes & Bicyclo[2.2.2]octanes

- ◆ Amgen hDGAT inhibitors: phenyl lead potent *in vitro*
 - poor activity in cell-based assay
 - cyclohexyl offers equivalent biochemical potency
 - much enhanced cell-based potency
- ◆ AZ DGAT-1 inhibitors: trans-cyclohexane potent in vitro
 - blocks triglyceride synthesis and storage
- ◆ Acyl glucuronide the 1° metabolite
 - added bulk to cyclohexane to increase stability of the AG
 - $t_{1/2}$ = 64 h in phosphate buffer: <15% rearrangement over 80 h
- HCV NS5A inhibitors
 - cyclohexyl & BCO analogues of daclatasvir: 6-15x less potent
 - see improved solubility properties, higher %F in rats

para-Phenyl Replacements in HCV NS5A Inhibitors

- GT-1b EC₅₀ <100 pM
 GT-1a EC₅₀ = 10-100 nM

 Samatasvir
 GT-1a, 1b, 2a, 3a, 4a, 5a EC₅₀ = 2-24 pM

 samatasvir advanced to clinic
- 4.29 Å 4.25 Å 2.89 Å *p*-phenoxy *m*-phenoxy mimic mimic

- ◆ Inhibitors of HCV NS5A replication complex
 - daclatasvir (DCV) the prototype
 - biphenyl moiety is a scaffold that projects the Pro-Val termini
- ◆ Replacements for the biphenyl a fertile area of research endeavor
 - these fused fully aromatic systems are planar with defined vectors
 - examined as phenyl replacements in complementary topologies
- Provided highly potent antiviral agents
 - less effective as a biphenyl replacement
 - too short: inadequate pharmacophore separation
- ◆ Pyrrolidino-azoles offer similar planar topography & vectors
 - have been deployed as bioisosteres of piperazines
 - distance closer to that of a 4-substituted piperidine/piperazine or aryl ring

Heterocycle Linkers in GPR119 Agonists

Linker	EC ₅₀ (nM)	Log <i>D</i> _{7.4}	LLE
	68	3.1	4.1
100 N	490	3.5	2.8
N O	87	3.0	4.1
N N	17 520x	3.1	4.7
N O	8,800	3.5	1.6
N N	520	2.6	3.7
N	16 (t-Boc deriv)	3.2	4.6

- GPR119 agonists
 - increases cAMP in pancreatic β-cells
 - stimulates insulin release
- Linker variation examined
 - acyclic & cyclic moieties explored
- Carbamate potent
 - C=O suggested to act as a HBA
 - SAR indicated preference for a planar linker
- ◆ Phenyl spacer 7-fold weaker than carbamate
 - 2-fold more potent than simple C4 alkyl chain
 - provided insight into preferred topology

Impact

↑ potency; ↓ lipophilicity; ↑ LLE

- Pyridine & 4,6-pyrimidine enhanced potency
 - N atoms mimic C=O as HBA
- ◆ 2,4-Pyrimidine isomer 520x weaker
 - explained by conformational preferences
- ◆ Triazine 30x weaker than pyrimidine
 - conflicted topology?
- ◆ Pyrrolo[2,3-d]pyrimidine = to pyrimidine
 - recapitulates preferred vector
 - confirms topological arguments

Optimal analogue

Active *in vivo* in glucose tolerance tests:
Lowered plasma glucose excursion
Reduced glucose-dependent insulin secretion

preferred conformational topologies

p-Phenyl Mimics in HIV-1 Maturation Inhibitors

Bicycles as *para-*Substituted Phenyl Mimics in γ-Secretase Inhibitors

- ◆ Bicyclopentanes as phenyl mimics pioneered by Pellicciari in 1990s
- Examined in γ-secretase inhibitors: fully preserves potency
 - mimicry confirmed by single crystal X-ray structures
- Lipophilicity reduced
 - solubility & metabolic stability in HLM improved
 - membrane permeability enhanced

	Solubil	Perm	
	Kinetic Therm		10 ⁻⁶ cm/s
Ph	0.60	1.70	5.52
	216	19.7	19.3

Impact

↑ solubility;

↑ membrane permeability

All efficiency metrics improved

	pIC ₅₀	Elog <i>D</i>	LE	LLE	LLE _{AT}	LELP	Ar-sp ³	Fsp ³
Ph	-9.65	4.70	0.28	4.76	0.30	16.6	12	0.25
\rightarrow	-9.75	3.80	0.30	6.55	0.39	12.5	1	0.52

Alloctoric v	-cocrotaco	inhibitore	(modulators)
Allosteric v	-960161996	יסוטווטוווווו	modulatora

	Lead	Analogue			
	Ph	ВСР	BCO	BCA	
EC ₅₀ (nM)	510	214	118	42	
Log D	>4	4.1	4.1	3.6	
Solubility (µg/mL)	<0.1	88	15	104	

Impact ↓ Log *P* ↑ solubility

	Lead	Analogue			
	Ph	BCP	BCO	BCA	
EC ₅₀ (nM)	95	777	114	34	
Log D	3.2	2.4	3.1	2.7	
Solubility (µg/mL)	<0.1	167	132	233	

BCA>BCO>BCP

- Allosteric modulators of γ-secretase
 - several series based on aniline substituent variation
- ◆ Effect of sp³-based phenyl mimics on potency context-dependent
 - bicyclic amine performs optimally in both series: BCA>BCO>BCP
 - solubility uniformly enhanced by all phenyl mimics

Aniline Isosteres in IDO1 and MDM2/p53 Inhibitors

	Lead	Bioisosteric analogue		
	Ph	BCP	diF-BCP	
HeLa EC ₅₀ (nM)	1.7	5.2	1.9	
hWB EC ₅₀ (nM)	30	ND	36	
ALog P	5.3	4.1	3.3	
Rat hepatocyte Cl _{int} (mL/min/kg)	1935		195	
Rat <i>in vivo</i> Cl _u (mL/min/kg)	4371		37	

Impact

↑ metabolic stability
↓ amide hydrolysis to
mitigate aniline release
↓ lipophilicity

- ◆ IDO1 inhibitor discovered by an affinity MS screen
 - poor metabolic stability in vitro & in vivo in rat
 - mCl-benzamide cleavage to release aniline major pathway
- ◆ BCP an excellent phenyl bioisostere from X-ray cocrystals
 - improved PK properties: F = 83%, 79% in rat, dog

- ◆ Inhibitor of MDM2/p53 association
 - BCP performed poorly in cell-based assay
 - BCO comparable to phenyl prototype
 - active in vivo in SJSA-1 xenograft model
- ◆ Alrizomadlin (AA-115/APG115) advanced into clinical trials
 - orphan drug status for malignant melanoma, retinoblastoma, soft tissue sarcoma on July 14th, 2021

	Lead	Bioisosteric analogue		
	Ph	BCP	BCO	N-Et-BCO
MDM2 IC ₅₀ (nM)	4.4	6.4	3.7	3.8
SJSA-1 EC ₅₀ (nM)	100	542	89	60
rat F (25 mg/kg PO)	31.5	NT	35.0	40.3
antitumor efficacy (% regression)	86%	NT	0%	100%

MDM2 = Murine Double Minute 2

Impact

↑ oral PK

no potential for aniline release

Cubane as a para-Phenyl Mimic: Terminal & Scaffold

- ◆ C-H bond dissociation energy of cubane = 104 kcal/mol: due to high s character
- ◆ SAHA analogue ≡ potency as inhibitor of tumor cell growth
- ◆ Cubane analogue of leteprinim more effective at promoting neurite outgrowth
- Benzocaine and cubacaine similarly potent at blocking nociception in rat
- ◆ Cubane analogue of diflubezuron a more effective insecticide: attributed to increased metabolic stability
- ◆ All 3 analogues of benzyl benzoate poorer at killing scabies mite
- ◆ Cubane a poor replacement for terephthalic acid in the retinoid analogue tamibarotene; lowered Log P
- Several cubane analogues of drug molecules proved to be unstable e.g. diphenhydramine
- Cubanes and bicycloalkanes offer enhanced solubility and reduced non-specific binding compared to a phenyl

- Postulated as a potential benzene mimic by Eaton in 1992
- Validated by Williams in 2016 (ACIE 2016, 31, 1421)
- Additional limitations: Williams 2019 (OBC 2019, 17, 6790)
 advanced COT as potential phenyl mimics

para-Substituted Phenyl Rings can be Critical Scaffolding Elements

- ◆ Imatinib (Gleevec®) analogues
 - none of 11 phenyl replacements effective: IC₅₀ >1 µM & 40 kinases
 - cubane analogue exhibited detectable effect in cell-based assay
- ◆ X-ray data suggest improper alignment of key interactions
 - disruption of piperazine N atom which engages Ile₃₆₀
- ◆ All isosteres tested showed enhanced aqueous solubility
 - all demonstrated lower cLog *D*_{7,4} values

- ◆ Diprovicims discovered as TLR-1/2 agonists by phenotypic screening
 - stimulation of TNF-α production in human THP-1 macrophages
 - promote TLR1/2 association
- Activity highly sensitive to the identity of the amide terminus
 - 4-F-phenethyl active but phenethyl not
- ◆ Core terephthalic acid scaffold also a critical scaffolding element
 - all replacements studied eroded potency

meta-Substituted Phenyl Mimetics

Pyridones as meta-Phenyl Mimics in HIV NNRTIs - Doravirine

	Virus	Lead		Bioisosteric analogue	
		Ph	MK-6186	Py	MK-1439
HIV-1 inhibition CIC ₉₅ (nM)	WT	10	22	12	19
	K103N	15	211	20	42
	Y181C	22	NT	70	25

- ◆ Lead HIV-1 NNRTI: azaindazole engages K₁₀₃ in a dual H-bonding interaction
- ◆ OCH₂ linker to CH₂ preserved activity toward WT, mutants in enzyme assay
 but ... activity of MK-6186 toward the K103N mutant in cell culture lower
- Sought replacements for phenyl ring (benzyl) to enhance potency & PK
 modeling indicated importance of orthogonal conformation of Ar-CH₂
- ♦ N-alkyl pyridones offered targeted polarity
 - modeled conformational landscape: strong preference for orthogonality
 - non-bonded interactions between C=O & N-substituent
 - mimicked conformation preferred by Ph-CH₂CH₃
- Triazolone enhanced solubility from 1 μM to 45 μM
 - improved pharmaceutical properties & PK profile
 - doravirine approved by the FDA in August, 2018

meta-Substituted Phenyl Mimics in BACE-1 Inhibitors

BACE1 IC₅₀ (cell) = 145 nM Log $D_{(pH7.4)}$ = 4.0 Soly_(pH6.5) = <1 µg/mL

BACE1 IC₅₀ (cell) = 87 nM Log $D_{(pH7.4)}$ = 3.1 Soly_(pH6.5) = 109 µg/mL

pyridyl-phenyl series

	Phenyl	cPr
IC ₅₀	145 nM	87 nM
pIC ₅₀	6.84	7.1
LE	0.32	0.34
LLE	2.8	4.0
LLE _{AT}	0.24	0.30
LELP	12.5	9.0
Fsp ³	0.18	0.35

- ◆ BACE1 inhibitors with poor solubility
- Searched CSD for meta-phenyl vector mimetics
 - trans cyclopropyl dihedral angle exit vectors differ by only 2.6°
 - an almost perfect superimposition
- trans-Cyclopropyl introduced to BACE1 inhibitor
 - potency preserved, Log D reduced by 0.9 unit
 - solubility increased by >100-fold
- Extended to a meta-aniline-based series
 - not a precisely matched molecual pair
 - activity maintained; ag. solubility improved >60-fold
 - mimicry confirmed by X-ray cocrystal comparison

Impact

↑ solubility

↓ Log D

↑ efficiency metrics

meta-Substituted Phenyl Mimic – Speculative Extension

- ◆ NAMPT inhibitor from a phenotypic screen
 - inhibitor of NAD+ synthesis in salvage pathway
- ◆ Urea CH₂-N morphed into a cyclopropane moiety
 - full preservation of activity
- Explored variants that installed urea N atom into a ring
 - azetidine conceived & modeled: a potent inhibitor
 - X-ray cocrystal structures of each revealed good overlap
- Ring homologues considerably less active
 - ≥ 350-fold less potent
- ◆ Cell activity is a function of ribophosphorylation of the pyridine *N* atom
 - metabolized to a more potent inhibitor

meta-Phenyl Mimics in BACE1, Aurora Kinase Inhibitors

	Lead	Bioisosteric analogue		
	LY	CyPr	Rev Am	OL
BACE1 IC ₅₀ (µM)	0.02	>100	92.4	0.01
PSA (Å ²)	90	90	90	77
cLog P	2.5	0.49	1.1	3.0

- ◆ LY28886721 advanced to clinical trials
 - robust reduction of CSF Aβ levels in Phase 1
 - 1st BACE1 inhibitor to advance to Phase 2
- Cyclopropyl explored as a replacement for meta-phenyl
 - altered vectors provided more opportunity for optimization
- Amides poorly potent
 - ether offered improved potency
 - inspired by serendipitous (unknown) element in X-ray
 - membrane permeability enhanced & P-gp efflux reduced

Impact potency

Aurora A kinase inhibitor: modestly potent amide; urea poor

 $IC_{50} = 3.2 \mu M$

 $IC_{50} > 20 \mu M$

- thieno-pyrimidine binds to N-H of the hinge Ala₂₂₆
- ◆ Linker ring critical: thiazole >1,000-fold more potent than Ph
- ◆ Topology of thiazole critical: correctly orients thieno-pyrimidine
 - O to S stabilizes bound conformation in cocrystal

Bicyclic Systems as meta-Phenyl Mimics

ortho-Substituted Phenyl Mimetics

ortho-Phenyl Mimic in a Self-Immolating Prodrug Moiety

R moiety
$$t_{1/2} < 2 \text{ min.}$$
 $t_{1/2} < 1 \text{ min.}$ $t_{1/2} < 1$

- ◆ Isavuconazole
 - azole antifungal agent approved by FDA & EMA in 2015
- ◆ Prodrug to Increase aqueous solubility for IV administration
 - pyridine offered superior release performance
 - 20x rate of cyclization
 - conformational and/or electronic effects
 - an isostere rather than a bioisostere

	Lead	Isostere
	Phenyl	Pyridyl
Solubility	1 mg/mL	>100 mg/mL
Prodrug t _{1/2} in rat plasma	<2 min.	<1 min.
Alcohol t _{1/2} in rat plasma	13 min.	<1 min. (undetected)

ortho-Substituted Benzene (Pyridine) Isostere

	Lead	Analogue	
	pyridine	diMe-Gly Cy-Gl	
hBK $B_1 K_i (\mu M)$	0.012	3.45	0.063
Rat PK			
F (%)	9	35	26
t _{1/2} (h)	0.15	6.6	9.5
CI (mL/min/kg)	35	4.2	9.3

Impact

↑ metabolic stability
 mitigated bioactivation & GSH adduct formation
 ↑ oral bioavailability

- ♦ Bradykinin B1 antagonist
 - saw metabolic activation of pyridine ring
- ◆ Reduced pharmacophore to a simple N-CH₂-CH₂-N moiety
 - rebuilt to potent inhibitors
- Cyclopropyl analogue with improved potency
 - di-CH₃ substantially less potent
- Attributed to π - π hyperconjugation between Δ C-C bonds & C=O
 - cyclopropyl C-C bonds have increased p-character
 - optimal at 0° and 180°
 - exerts conformational bias
- ◆ Bond angles enforced by cyclopropyl closer to 120° in pyridine
- Saw improved PK in rats with transforms
- ◆ Isostere demonstrated to be applicable to FXa inhibitors
 - similar motif exploited in the design of TGR5 agonists

ortho-Substituted Phenyl Mimics in Factor Xa Inhibitors

Impact ↑ potency ↑ cell activity ↓ MW ↓ Log P	F ₃ C N N O OCH ₃	F ₃ C N N O OCH ₃
FXa K _i	0.3 nM	0.035 nM
PT EC _{2x}	8 µM	.18 μΜ
cLog P	6.73	5.99
MW	520.5	484.2
HAC	38	35
LE	0.35	0.42
LLE (pIC ₅₀ - cLog P)	4.50	7.11
LLE _{AT}	0.27	0.39
LELP	14.3	8.0
Fsp ³	0.24	0.38
Ar-sp ³	16	7
PFI: Log <i>D</i> _{pH7.4} + #Ar	9.02	6.35

HLM $t_{1/2}$ = 110 min. Caco-2 P_{app} = 8.5 x 10⁻⁶ cm/s F (dog) = 53%

- α-Substituted cyclopropane favors perpendicular conformation
 - CH₃ favors perpendicular orientation by 0.7 kcal/mol
- ◆ Potency increased 10x: consistent across a series of analogues
 - anticoagulant activity improved ~4-fold across the series
 - LE, LLE, LLE_{AT} and Fsp³ increased
 - LELP, Ar-sp3 decreased
- ◆ X-ray co-crystal of analogue with FXa
 - confirmed perpendicular conformation
 - improved hydrophobic interactions of dialkyl amine explains potency

Pyran as Ortho-Fluoro Phenyl Replacement in ASK1

Impact improved selectivity

ASK1 $IC_{50} = 14 \text{ nM}$ LE = 0.45; LLE = 5.9 ASK1 IC₅₀ = 100 nM cLog D = 1.7LE = 0.4; LLE = 5.3

ASK1 $IC_{50} = 270 \text{ nM}$ cLog D = 2.0LE = 0.39; LLE = 4.6 X = CH: ASK1 IC₅₀ = 130 nM cLog D = 2.3; LLE = 4.2

X = N: ASK1 $IC_{50} = 31 \text{ nM}$ cLog D = 1.1; LLE = 6.0

ASK1 $IC_{50} = 17 \text{ nM}$ cLog D = 2.1

LLE = 5.4

selonsertib ASK1 $IC_{50} = 3 \text{ nM}$ LE = 0.35; LLE = 5.8

- Apoptosis signal-regulating kinase-1 (ASK1 or MAP3K5) inhibitors
 - activated by extracellular signals: cytokines, ER stressors, reactive oxygen species
 - phosphorylates MAP kinase effectors MKK3/6 & MKK4/7 leading to activation of p38 & JNK pathways
 - immunology target but is involved in cardiac ischemia pathophysiology; maybe involved in NAFLD & NASH
- Potent isoindolone lead from a Takeda article with cocrystal structure data
 - amide C=O engages Val₇₅₇ NH of the hinge
- iPr-triazole a critical pharmacophore element
 - focused on modification of the isoindolone while retaining planarity
- ◆ THP offered reasonable potency good LE & LLE values
 - cocrystal structure confirmed similar binding mode to lead; O & NH coplanar
 - MAP kinase screening (12 enzymes) indicated enhanced selectivity over the lead
- ◆ Switch to a morpholine provided a vector to project toward Gly₇₅₉
 - guided by model of selonsertib where imidazole π stacks over the amide
- ◆ Substituted pyridine optimal in resolved form; highly selective for ASK1 vs 350 kinases
 - poor PK prevented advancement

Analyzed the PDB

- saturated amides rare in 5,490 kinase inhibitors

O to N is 2.52 Å

- typical phenyl rings & homologues (>99%)
- ◆ Unusual 2-F-phenyl replacement
 - 2-F-phenyl is a common motif in kinase inhibitors

[1.1.1]-BCPs as ortho-Substituted Phenyl Mimics

- ◆ Syntheses of 1,2-disubtituted [1.1.1]-BCPs developed
 - explored as ortho-substituted phenyl mimics
 - produces a mixture of enantiomers
- ◆ Examined in context of AT₁ antagonist, D₃ agonist, JAK2 inhibitor
 - activity preserved in AT₁ antagonist, D₃ agonist setting
 - JAK2 inhibitor 3-fold less potent with similar selectivity
- ◆ Solubility enhanced (AT₁) or preserved (D₃, JAK), dependent on context
 - lipophilicity preserved or reduced
 - clearance reduced in JAK inhibitors; increased in D₃ agonists

Impact

potency maintained reduced sp² content most properties preserved

Bicyclo[2.1.1]hexanes as ortho-Phenyl Mimics

Impact

sp² content

solubility

- ◆ Bicyclo[2.1.1]hexane
 - 1 C homologue of bicyclo[1.1.1]pentane; C analogue of oxabicyclo[2.1.1]hexane
- Bond distances slightly longer than benzene
 - comparable to BCP
- Solubility of test compound improved by 33%
 - comparable Log D_{7.4}
- ◆ Installed as *ortho-phenyl* replacement in 2 fungicides, valsartan
 - fungicide analogues demonstrated comparable biological activity to prototype

Shape Isosteres: Adamantane & π-π Interacting Aryl Rings

- ◆ ABT-737 a Bcl-2-Bak protein-protein inhibitor
 - X-ray cocrystal structure revealed that SPh folds back to π - π stack with NO₂-aryl
- Rigid tricyclics postulated as potential mimics
 - reduced lipophilicity & rotatable bond count
 - potential thermodynamic advantage with pre-organization
- ◆ Potency of simple CH₂-adamantyl 33x lower; CH₂-homoadamantyl 6x lower
 - X-ray indicates loss of H-bond from SO₂ to backbone NH of Gly₁₀₄
 - ligand efficiency improved for 3 simple compounds
- ◆ CH₂-adamantyl:
 - cLog P = 9.5, F = 66% in rat; OH: cLog P = 6.4, F = 100%

Impact reduced sp² content

LE = $\frac{\text{pIC}_{50} \times 1.37}{\text{HAC}}$ kcal/mol/heavy atom

Caveat Emptor

	Cerivastatin	Atorvastatin	Rosuvastatin
	P N ÖH ÖH	F O NH ÖH ÖH	O O=S N N N OH ÖH
HMG-CoA K _i	5.7 nM	14 nM	2.3 nM
Log D _{pH7}	0.40	1.08	-1.91
Log P	3.18	3.85	0.89
Mol. formula	$C_{26}H_{34}FNO_5$	$C_{33}H_{35}FN_2O_5$	$\mathrm{C_{22}H_{28}FN_3O_6S}$
MW	459.5	558.6	481.5
HBA	6	7	9
HBD	3	4	3
∑HBA + HBD	9	11	12
RB	13	14	12
PSA	99.9 Ų	112 Å ²	149 Ų
Fsp ³	0.46	0.27	0.41
Ar-sp ³	0	14	3
# of rings	2	4	2
PFI/iPFI	2.4/5.18	5.08/7.85	-0.09/2.89
Δ <i>G</i> /Δ <i>H</i> /- <i>T</i> Δ <i>S</i> (kcal/mol)	-11.4/-3.3/-8.1	-10.9/-4.3/-6.6	-12.3/-9.3/-3.0

- Cerivastatin launched in June 1997
 - most potent statin in vivo, high %F
 - low clinical dose of 0.2-0.8 mg
- ◆ 2 Aromatic rings; high Fsp³ value; very low Ar-sp³; lowest MW
 - thermodynamic signature similar to atorvastatin
 - relies more on entropy than enthalpy
 - rosuvastatin is only statin with high ΔH dependence
- ◆ Appears to be a well-designed compound
 - low dose, high %F
 - mixed excretion via kidney & bile
- ♦ High rate of fatal rhabdomyolysis
 - ~800x atorvastatin; 50x the 0.19 average for all statins
 - more than 100 fatalities
 - exacerbated by concomitant gemfibrozil use
 - withdrawn worldwide August 2001

	Cerivostatin	Atorvastatin	
Dose (mg)	0.2-0.8 mg	10-80 mg	
C _{max} (mg/mL)	27-66 (0.2 mg)	2 (40 mg)	
РВ	>99%	80-90%	
t _{1/2} (h)	2.1-3.1	15-30	
urine/fecal	30/70	2/70	
rhabdomyolysis	3.16 per 10 ⁶ R _x	0.04 per 10 ⁶ R _x	

Conclusion

Conclusion

- ◆ The presence of planar ring systems have been implicated in drug attrition
 - confer less than optimal physicochemical properties
- Phenyl rings the most problematic
 - seem to negatively affect solubility more than anticipated by Log P value
- ◆ The (ab)use of phenyl rings may have been driven by ready synthetic access
 - planar topography reduces complexity
- ◆ The introduction of phenyl ring can often be associated with increased potency
 - underlying effect may be entropic rather than enthalpic: use LLE to assess quality
- Bioisosteres of phenyl rings have been and continue to be explored extensively
 - demonstrated capacity to solve a range of developability challenges
 - low solubility, aniline release, PK, high protein binding, hERG inhibition, phospholipidosis, phototoxicity
- ◆ Significant progress made over the last decade in developing synthetic access to complex sp³-rich ring systems
 - bicyclo[1.1.1]pentanes, cubanes prominent examples
 - oxa-substituted homologues attracting attention
- Effective mimics of ortho-, meta-, & para-substituted benzene scaffolds have been developed
 - bioisosteric effect is highly dependent on context
 - tailor/optimize an isostere to specific application
- ◆ In some examples, phenyl rings have been difficult to replace
 - stimulus for new bioisostere design: many opportunities remain

Acknowledgement

Murugaiah A.M. Subbaiah
Biocon Bristol Myers Squibb Research and
Development Centre, Bangalore, India

Pyridone to Replace a Terminal Phenyl Ring in IDH1 R132H Inhibitors

- ◆ Isocitrate dehydrogenase (IDH) inhibitor for glioblastoma
 - modest potency; poor solubility
 - poor oral exposure
 - modest CNS penetrance
- Cocrystal structure guided design toward olutasidenib
 - pyridone C=O engages Ile N-H
 - potency, solubility; met. stab. enhanced
 - brain:plasma ratio = 0.24

	Lead	Bioisosteric analogue				
	Ph	pyridone	satd. pyridone	cyano- pyridone	FT-2102	
IDH1-R132H IC ₅₀ (μM)	0.127	0.36	25	0.0403	0.0212	
MLM HLM (% left at 30 min.)	42 81	26 90	83 99	73 99	92 100	
Solubility (µM)	0.43	54	94	0.295	34.5	

improved potency:

increased metabolic stability; enhanced solubility; reduced lipophilicity

Impact

All-cis-Poly-fluoro Cyclohexane Derivatives

- cis-Fluorocyclohexanes present large dipole moments
 - C-H and C-F face opposite directions
 - polarization facilitates C-H to π interactions
- Equatorial disposition of alkyl substituent favored
 - despite being associated with a higher dipole moment
- ◆ Log P of tetra-F reduced by 2.5 from cyclohexane
 - Log P value reduced by 1.75 compared to phenyl
- ◆ Incorporated penta-F cyclohexane into peptide-based viral cysteine protease inhibitors
 - none were active towards Zika or SARS-CoV-2 viruses in cell culture

2,5-Di-Substituted Pyrazine Mimetics in Oxytocin Antagonists

- Oxytocin mimic with poor aqueous solubility
 - 4 planar aromatic systems
 - modest cLog P value
- Strategy: modify pseudo-biphenyl moiety to address solubility
 - saturated compounds typically exhibit enhanced solubility
- ◆ Azetidine, pyrrolidine, piperidine ethers modeled
 - exhibited good structural overlap with phenyl
 - all 3 structural motifs provided potently active compounds
 - modest increase in cLog P
- Excellent potency achieved with azetidine & additional structural variation
 - aqueous solubility improved by 10-fold over prototype
 - cLog P maintained with final structural modifications

Impact

enhanced solubility despite increased Log P

Phenyl Mimics at 2 Sites in GPR40 Agonists

- ♦ Highly lipophilic GPR40 agonist
 - fatty acid receptor
- Replaced inner phenyl of biphenyl with a piperidine
 - potency enhanced ~40-fold; full agonism retained
 - cLog P fell by ~ 1 unit
- ♦ N-Pyridylbenzamide element introduced
 - preserves potency/efficacy
 - prefers an L-shaped conformation
 - orients neopentyl substituent toward a lipophilic pocket
- Phenoxy moiety replaced by a pyridyl ether
 - potency & efficacy fully preserved
 - further reduction in cLog P
 - topological isomer significantly less potent
 - can be explained by conformational preference
 - depicted topology seen in X-ray structures
- ◆ SCO-267: resolved (S)-isomer is the eutomer
 - 7-fold more potent than the (R)-isomer (84 nM/109%)
 - advanced into clinical trials

	Lead	Bioisosteric analogue					
	Ph	Pip Ph-amide Py-amide SCO-267					
hGPR40 EC ₅₀ (nM)	410	11	17	17	12		
E _{max} (%)	105	106	109	112	108		
cLog P	9.35	8.4	6.4	5.8	5.8		

Impact
 ↑ potency
 ↓ aromatic content
 ↓ lipophilicity

Piperidine as Phenyl Mimic in GPR40 Agonists

	FLIPR hGPR40 EC ₅₀ (nM)	cLog P
	210	7
VN V	530	5.73
N 0 1	210	4.55
, N ₂ ~ 0	2,830	4.48
Zanger N	5,360	1.10
N, O	940	4.60
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	630	4.60

- GPR40 agonists
 - promote glucose-stimulated insulin release
- Saw cardiac (HR, BP) side effects & PPARγ agonism
 - high cLog P hypothesized as source of promiscuity
- ◆ Sought to lower cLog *P* and increase sp³ content
 - replaced central phenyl ring with aza heterocycles
- ◆ Piperidine offered best in vitro performance
 - activity 2.5-3.0 x lower, cLog P fell by 1.3-2.5 units
 - saw GSH adducts with anisole moiety
- ◆ Optimized by O, CH₃ on piperidine in pyrazole series
 - pyridine ring introduced to reduce GSH adducts

measured Log $D_{6.5} = 4.6$

Bicyclopentane (BCP) as a Phenyl Mimic – LpPLA₂

- ◆ Darapladib is a lipoprotein-associated PLA₂ (LpPLA₂) inhibitor
 - binds to active site of LpPLA₂
 - evaluated clinically as a therapy for atherosclerosis
- Has sub-optimal physicochemical properties
 - ChromLog $D_{7A} = 6.3$; m/e = 667
- BCP analogue exhibited similar potency
 - bioisosterism confirmed by X-ray cocrystal structures
- Solubility & permeability improved
 - but: ChromLogD_{7.4} increased & PFI was not altered
 - low CI in human liver microsomes in both series
- Properties mimicked by the BCP analogue of rilapladib

darapladib	Phenyl	ВСР
pIC ₅₀	10.2	9.4
Kinetic sol. (µM)	8	74
FASSIF sol. (μg/mL)	399	>1000
Membrane perm. (nm/s)	230	705
ChromLog D _{7.4}	6.3	7.0
PFI	10.3	10.0

rilapladib	Phenyl	ВСР
pIC ₅₀	9.6	NT
Kin sol. (μM)	<1	32
FASSIF sol. (µg/mL)	203	635
ChromLog D _{7.4}	6.74	7.06
PFI	11.74	11.06

 $PFI = Log D_{DH7} + #Ar$

Impact

increased solubility
enhanced membrane permeability
modest reduction in PFI

[1.1.1]-BCPs as ortho- or meta-Substituted Phenyl Mimics

- ◆ Syntheses of 1,2-disubtituted [1.1.1]-BCPs developed
 - explored as ortho-and meta-substituted phenyl mimics
- No biological evaluations conducted
 - solubility typically enhanced by the transform
- ◆ Log D, membrane permeability & metabolic stability evaluated
 - effects varied

- Axitinib: VEGF kinase inhibitor
 - benzamide ring replaced with a [1.1.1]-BCP
 - potency declined by 270-718-fold
- ◆ X-ray cocrystal structure
 - O to S interaction (2.9 Å) favors planar conformation: 0°
 - both the NH & C=O of amide of axitinib engage the kinase
- ◆ [1.1.1]-BCP modeling
 - distance between O and S is 4.0 Å; torsion angle = 67°
 - disruption of key contacts between inhibitor & kinase
- ◆ Solubility enhanced with no change in Log D
 - other developability parameters less favorable

Melanin Concentrating Hormone Receptor (MCHR1) Antagonists

- ◆ Melanin Concentrating Hormone (MCH) regulates food intake
 - MCHR1 antagonists have potential as a therapy for obesity
- Potent biphenyl-based lead inhibitor identified
 - evidence for the release of the biphenyl aniline in vivo
 - tested positive in an Ames mutagenicity assay
- ◆ Explored a range of 6 membered rings as potential replacements
 - pyrazine, pyrimidine, piperidine all much less potent
- ◆ trans-Cyclohexyl analogue 150x ↓ potency to 297 nM
 - cis-isomer 10x weaker: $K_i = 3,465 \text{ nM}$
- ◆ Cyclohexene (styrene) potent; 100x cyclohexane
 - 2 H atom difference from cyclohexane
 - concern for oxidation to phenyl in vivo
- Cyclopropanation blocked the potential for oxidation
 - all 4 possible isomers evaluated
 - all were potent antagonists
 - illustrates the complexity of using saturated phenyl isosteres

	Lead	ad Bioisosteric analogue					
	Ph	Су	Sty	Α	В	C	D
MCHR1 K _i (nM)	2	297	3	8.6	15	8.9	11.4
Rat PK AUC (h.ng/mL)				1924	2685	2183	2980
Mouse ex vivo binding (% at 6 h)				62	73	49	58
24 h DIO mouse assay at 6 h				16%	21%	1%	6%

