Lecture@Blumberg Institute 2024/08/26

First atroposelective Chan–Lam coupling for the synthesis of axially-chiral C–N linked biaryls and other boron chemistry

Takashi Ikawa

Gifu Pharmaceutical University, Japan

KRAS G₁₂C inhibitor

Divarasib (AstraZeneca)

(AstraZeneca)

AZD4625 (AstraZeneca)

Today's Topics

1. First atroposelective Chan–Lam coupling

2. New arylboronic acid derivatives, ArB(Epin)

Today's Topics

1. First atroposelective Chan–Lam coupling

2. New arylboronic acid derivatives, ArB(Epin)

Biologically active C–N axially chiral biaryls

KRAS G₁₂C inhibitor Sotorasib (Amgen)

Uric acid reabsorption inhibitor Lesinurad (AstraZeneca)

(25 °C)

RXR partial agonist anti-diabetes type 2

 $IC_{50} = 0.064 \ \mu M$

GlyT1 inhibitor

IC₅₀ = **20** μ**M**

Synthesis of Sotorasib

B. A. Lanman et al. Acc. Chem. Res. 2022, 55, 2892–2903.

https://www.epa.gov/greenchemistry/green-chemistry-challenge-2022-greener-reaction-conditions-award

Synthesis of C–N axially chiral biaryls

Enantioselective alkyne cyclization

O. Kitagawa et al. Chem. Eur. J. 2010, 16, 6752-6755.

Enantioselective Buchwald-Hartwig reaction

R.-R. Liu et al. Angew. Chem. Int. Ed. 2021, 60, 21718–21722.

Synthesis of C–N axially chiral biaryls

First stereoselective C–N cross-coupling

K. Kamikawa; M. Uemura et al. J. Org. Chem. 2007, 72, 3394–3402.

Calytic enantioselective C-N coupling

^{52%, 93%} ee

B. Tan et al. Angew. Chem. Int. Ed. 2020, 59, 6775–6779.

C–N coupling for synthesizing biaryls

Ullmann coupling

S. L. Buchwald et al. J. Org. Chem. 2007, 16, 6190-6199.

S. L. Buchwald et al. Angew. Chem. Int. Ed. 2006, 45, 6523-6527.

Chan-Lam coupling $ightarrow N = H = H = H^{B(OH)_{2}} = H^{B(OH)_{2}} = H^{Cu(OAc)_{2} (150 \text{ mol}\%)} = H^{Cu(OAc)_{2} (150 \text{ m$

P. Y. S. Lam et al. *Tetrahedron Lett.* **1998**, *39*, 2941–2944.

Our strategy

Atroposelective Chan–Lam coupling

Issues to be solved

- 1. Hard to couple between hindered substrates
- 2. Who knows atroposelective Chan–Lam possible?

Racemization barrier around C–N axis

Racemization barrier 23 kcal/mol (Theoretical) dihedral angle (°)

Optimized Geometries at B3LYP/6-31G(d) Level of Theory

Racemization barrier around C–N axis

Racemization barriers around C–N axises

N-arylimidazole N-arylbenzimidazole Me Me Ме Br Me OMe .OMe .OMe .OMe OMe .OMe 23 kcal/mol 40 kcal/mol 23 kcal/mol 7 kcal/mol 29 kcal/mol 30 kcal/mol Me CI Br Br Me OMe kcal/mol 26 kcal/mol 28 kcal/mol 11 9 kcal/mol 24 kcal/mol 9 kcal/mol Me Br Me Me Br C Br Br .OMe .OMe MeO Me MeO, Me MeO Me 41 kcal/mol 23 kcal/mol 35 kcal/mol 25 kcal/mol 29 kcal/mol

35 kcal/mol

Additive effect of Chan–Lam coupling

 \square

(1.0 equiv)	+ B(OH) ₂ OMe (2.0 equiv)	Cu, ligand oxidant, base additive solvent etc	Up to 5%			
variable						
Cu source	Cu(OAc) ₂ , Cu(OTf) ₂ ,Cu(OPiv) ₂ , Cu(acac) ₂ , Cu(TFA) ₂ , CuBr ₂ , CuCl ₂ , CuSO ₄ , CuFAP, [Cu(DMAP) ₄ I]I, [Cu(OH) [.] TMEDA] ₂ Cl ₂ , Cu(MeCN) ₄ PF ₆ , CuCl, Cu ₂ O, Cu ₂ S, Cu Complex					
oxidant	air, O ₂ , pyridine <i>N</i> -oxide, Tempo, (<i>t</i> -BuO) ₂					
base solvent	Et ₃ N, (<i>i</i> -Pr) ₂ NEt, pyridine, 4-methylpyridine, 2,6-lutidine, K ₂ CO ₃ , K ₃ PO ₄ , <i>t</i> -BuOK, <i>N</i> -methylpiperidine, <i>n</i> -Bu ₄ NOH, NaOSiMe ₃ CH ₂ Cl ₂ , MeCN, EtOAc, MeOH, EtOH, 1,4-dioxiane, NMP, THF, DMF, PhMe, DMSO, H ₂ O, <i>t</i> -BuOH					
ligand	TMEDA, DMAP, NHC derivatives, bipyridines, phosphines, 1,10-phennthroline, iminoarylcarboxylates, iminoarylsulfonates					
additive	myristic acid, urea, B(OH) ₃					
temperature	rt–100 [°] C					

Additive effect of Chan–Lam coupling

MnO₂ addition effect of Chan–Lam coupling

^aUsing 10 equiv of MnO₂. ^bDetermined by GC analysis. ^cUsing 100 equiv of MnO₂.

Ligand screening (No. 1)

Screened commercially available 70 chiral ligands

Ligand screening (No. 2)

Screened synthesized 22 chiral BOX ligands

MnO₂ addition effect of Chan–Lam coupling

	$ \begin{array}{c} & B(OH)_2 \\ & & & \\ & $		$ \begin{array}{c} \text{Et} \text{Et} \\ & N \\ & N \\ & & \\ \end{array} $ $ \begin{array}{c} \text{10} & \\ \text{Cy} \\ & \\ \text{O}_{3})_{2} \cdot 5H_{2}O \\ \hline & \\ \end{array} $ (10 equiv)	
entry	Cu cat : ligand (mol%)	MnO ₂	yield (%) ^{a)}	ee (%)
1	25 : 75	+	quant	72
2	25 : 75	_	54	74
3	25 : 50	+	94	72
4	25 : 50	_	37	78
5	25 : 25	+	90	66
6	25 : 25	_	22	64
7	25 : 12.5	+	95	48
8	25 : 12.5	_	16	38
9	25: 0	+	33	0
10	25 : 0	—	9	0

a) Determined by ¹H NMR.

MnO₂ addition effect of Chan–Lam coupling

ſŢŢ ^N ≯	CI + (2.0 equiv)	$Cy = 10^{Cy}$ $Cu(NO_3)_2 \cdot 5H_2O$		
N H		MnO ₂ MeOH	(10 equiv) , O ₂ , 25 °C	
entry	Cu cat : ligand (mol%)	MnO ₂	yield (%) ^{a)}	ee (%)
1	25:75	+	quant	72
2	25 : 75	_	54	74
3	25 : 50	+	94	72
4	25 : 50	-	37	78
5	25 : 25	+	90	66
6	25 : 25	-	22	64
7	25 : 12.5	+	95	48
8	25 : 12.5	-	16	38
9	25 : 0	+	33	0
10	25 : 0	—	9	0

a) Determined by ¹H NMR.

Transformation of product bearing bromine

Substrate scope and limitation (No. 1)

a) Determined by GC analysis.

Substrate scope and limitation (No. 2)

a) Determined by GC analysis. b) Using 100 equiv of MnO₂.

Reaction mechanism of Chan–Lam coupling

24

Conclusion for Chan–Lam

First atroposelective Chan–Lam coupling

Chem. Commun. 2024, 60, 678–681.

Patureau's report

Patureau and his co-workers reported atroposelective Chan–Lam couplings right after accepting our paper.

F. W. Patureau et al. Chem. Eur. J. 2024, 30, e202304378.

Later on...

Atroposelective Buchwald–Hartwig reaction

Then, Li and his co-workers reported atroposelective Buchwald–Hartwign reaction published in this year.

X. Li et al. J. Am. Chem. Soc. 2024, 146, 16567-16580.

Today's Topics

1. First atroposelective Chan–Lam coupling

2. New arylboronic acid derivatives, ArB(Epin)

Boronic acid derivatives

Typical aromatic boronic acid derivatives

Concept of this work

Not reported before

Synthesis of ArB(Epin): Dehydrative esterification

Conditions: $ArB(OH)_2$ (1.0 equiv), Epin (1.0 equiv) in CH_2CI_2 (0.10 M) at rt for 16 h. a) In benzene (0.10 M) at 80 °C for 16 h. b) Using Epin (2.0 equiv) refluxed in benzene with Dean-Stark for 12 h. c) AcOH (0.10 equiv) was added as an additive and stirred in Et_2O at rt for 16 h.

Synthesis of ArB(Epin): Metallation & esterification

Conditions: ArBr (1.0 equiv), ^{*n*}BuLi (1.2 equiv), B(OMe)₃ (2.0 equiv) in THF (0.10 M) for Reaction A. Epin (1.0 equiv) in CH₂Cl₂ for Reaction B. a) At 40 °C for Reaction B. b) ^{*i*}PrMgCl·LiCl (1.2 equiv), B(OMe)₃ (2.0 equiv) for Reaction A. c) ^{*n*}BuLi (1.1 equiv), Et₂O (0.10 M) for Reaction A. Epin (1.0 equiv), AcOH (0.10 equiv) for Reaction B. d) ^{*t*}BuLi (4.2 equiv), B(OMe)₃ (2.4 equiv) for Reaction A. Epin (2.0 equiv) in benzene (0.10 M) at 80 °C for 16 h for Reaction B.

Synthesis of ArB(Epin): Miyaura borylation

Et

Et

toluene

reflux

Dean-Stark

HC

OH

35

B₂Epin₂

Et

Ft

quant

Synthesis of ArB(Epin): C–H borylation (No. 1)

Conditions: Ar–H (0.20 mmol), B_2Epin_2 (1.0 equiv), $[Ir(COD)OMe]_2$ (3.0 mol%), dtbpy (6.0 mol%) in THF (0.10 M) at rt for 16 h. a) At 50 °C. b) Used *N*-Boc pyrrole as a substrate.

Synthesis of ArB(Epin): C-H borylation (No. 2)

a) Conditions: **3** (0.20 mmol), $B_2(Epin)_2$ (1 eq), $[Ir(COD)OMe]_2$ (3 mol%), dtbpy (6 mol%), THF (0.1 M) at room tempreture for 16 h. b) Hexane as solvent. c) At 50 °C.

Purfication of ArB(pin) and ArB(Epin)

Purfication of ArB(pin) and ArB(Epin)

10%AcOEt/Hexane

Thin Layer Chromatography (TLC) behavior of ArB(pin) and ArB(Epin)

Transformation with ArB(Epin) intact

Suzuki coupling of ArB(Epin)

Conditions: ArB(Epin) (1.5 equiv), Pd(OAc)₂ (1.0 mol%), SPhos (2.0 mol%), K₃PO₄ (2.0 equiv) in toluene/H₂O (10/1) for 24 h at 110 °C. 42

Suzuki coupling of ArB(Epin)

Conditions: ArB(Epin) (1.5 equiv), Pd(OAc)₂ (1.0 mol%), SPhos (2.0 mol%), K₃PO₄ (2.0 equiv) in toluene/H₂O (10/1) for 24 h at 110 °C.

Conclusion for boronic acids part

X = B(OH)₂ = halogen

B(pin)

WO202218098

Feature of ArB(Epin)

1. Stable on silica gel

B(Epin)

- 2. Enabled functionalization
- 3. Acid and base stable
- 4. Enabled Suzuki coupling

Org. Lett. **2022**, *24*, 3510–3514. Most viewed *Organic Letters* article in 2022 Shenyang 沈阳市

LIAONING

North Korea

JILIN

Pyongyang 평양

South Korea

Gifu Pharm. Univ.

Fukuoka 福岡

> Osaka 大阪

Sea of Japan

Sapporo 札幌

Hakodate

Tokyo 東京

a Sea

а

Faculty of Education Gifu University 岐阜大学教育学部

0-1

岐阜大学医学部

Gifu University

岐阜大学

Gifu University Library 成日大学図目的

OINOKAMI 老ノ上

Acknowledgement

Acknowledgement

Prof. Patrick Y. S. Lam

Thank you for your kind attention