A Perspective on Applications of Fluorine in Drug Design Through the Lens of Bioisosterism

Nicholas A. Meanwell

Baruch S. Blumberg Institute School of Pharmacy, The University of Michigan Ernst Mario School of Pharmacy, Rutgers University-New Brunswick NuArq MedChem Consulting LLC

Baruch S. Blumberg Institute Monday, April 21st, 2025

Fluorine in Medicinal Chemistry - Outline

Prevalence of Fluorine in Marketed Drugs & Agricultural Products

Presence of Fluorine in Approved Drugs

H. Liu *et al., Chem. Rev.*, 2014, **114**, 2432-2506; J.T. Njardarson *et al., J. Med. Chem.*, 2014, **57**, 2832–2842; D. O'Hagan, *J. F. Chem.*, 2010, **131**, 1071-1081; P. Jeschke, *ChemBioChem*, 2004, **5**, 570-589; F. Viani *et al., ChemBioChem*, 2004, **5**, 590-613; N.A. Meanwell, *J. Med. Chem.*, 2018, **61**, 5822-5880; S. Ali & J. Zhou., *Eur. J. Med. Chem.*, 2023, **260**, 115476

Presence of Fluorine in Agricultural Products

- Fluorinated motifs heavily exploited in agricultural products

 52% of pesticides 2010-2017 contained F
 25% of 229 herbicides launched before 2014 contained F
- 25% of 229 herbicides launched before 2014 contained in • 238 Agrochemicals with ISO names assigned 1998-2020
- 236 Agrochemicals with ISO names assigned 1996-20
 127 (53%) contained F
 Many fluering to dispersively a stiff have a sinisis at a dispersively as a dispersively
- Many fluorinated motifs have originated in ag. chem.
 adopted by medicinal chemistry a decade later

P. Jeschke, ChemBioChem, 2004, 5, 570-589; P. Jeschke, Pest Manag. Sci. 2017, 73, 1053-1066; T. Fujiwara & D. O'Hagan, J. Fluorine Chem., 2014, 167, 16-29 N. Shibata et al., iScience, 2020, 23, 101467. Thanks to Olivier Loiseleur & Torsten Luksch (Syngenta AG) for details on fluorinated motifs used in agricultural chemistry

Fluorine & PFAS

N.D. Tyrrell, Org. Proc. Res. Devel., 2023, **27**, 1422-1426; D. O'Hagan & R.J. Young, Med. Chem. Res., 2023, **32**, 1231-1234 M.F. Khan et al., Appl. Microbiol. Biotechnol., 2021, **105**, 9359-9369; M. Sun et al., Chemosphere, 2020, **254**, 126894; L.P. Wackett, Microb. Biotechnol., 2022, **15**, 773-792

The Versatility of Fluorine in Drug Design

E.P. Gillis, N.A. Meanwell et al., J. Med. Chem., 2015, 58, 8315-8359; N.A. Meanwell, J. Med. Chem., 2018, 61, 5822-5880

Properties of Fluorine

							1								
		von der Masie	Total	Electro						Amine	e	р <i>К</i> _а	Acid	р <i>К</i> а	
Bond	Length (Å)	Radius (Å)	Size (Å)	negativity	Dipole	Moment µ (D)			CH ₃ CH ₂ I	NH ₂	10.7	CH ₃ CO ₂ H	4.76	
C-H	1.09	1.20	2.29	2.20	~-0.4					FCH ₂ CH ₂	NH ₂	8.97	FCH ₂ CO ₂ H	2.59	
C-F	1.35	1.47	2.82	3.98	1.41					F ₂ CHCH ₂	NH ₂	7.52	F ₂ CHCO ₂ H	1.24	
C=O	1.23	1.50	2.73	3.44	2.33 (H₂C=					$CF_3CH_2NH_2$		5.7	CF ₃ CO ₂ H	0.23	
C-OH	1.43	1.52		3.44	2.87	′ (CH₂OH)					F = f = = f		- f		
C-CN	2 22 (HCN H-N)				3.92	$(CH_{0}CN)$		· Falle			- redu	uces basicity of amines			
S=O	1.44 (MeSO ₂ Me)	1.52		3.44	4.44	(MeSO ₂ Me))				- incr	eases acidity	of acids & alcohols		
♦ F is 20	▶ F is 20% larger than H,						Atom	σ _p	σ _m	π					
 closer in size to C=O F behaves more like H in P-gp, met. stab. & permeability assays use E-corrected MW (up to 5 E atoms) 							F	0.06	0.34	0.14					
					5		CI	0.23	0.37	0.71					
- (MW _{FC}): total MW – MW derived from F							Br	0.23	0.39	0.86		♦ ¹⁹ E-iso	ntope useful for NMR	analysis	
C-F bond is the most polarized in organic chemistry							Ι	0.18	0.35	1.12		- 2	assess drug-target int	eractions	
 large dipole interacts electronically with polar substituents C-F dipole is in the same direction as C=O but the reverse of C-H 					re	 ♦ Modest EWG at para-position stronger effect when meta- 					 fragment screening ¹⁸F-isotope is a positron emitter positron emitting tomography (PET) 				
♦ F is the most electronegative atom 3.08 vp 2.20 for H					- CI & Br are stronger EWGs - σ- vs. mesomeric effects						- imaging, receptor occupancy studie - useful pre-clinically & clinically - $t_{1/2} = 109$ min				
 - 3.96 vs 2.20 for H C-F bond dissociation energy is high - 105.4 kcal/mole; - compare to C-H: 98.8; C-CI; 78.5 kcal/mole 					 F is the smallest & least lipophilic C-F does not have a low lying σ* poor halogen bond donor 										

E. Gillis, N.A. Meanwell *et al., J. Med. Chem.,* 2015, **58**, 8315–8359; N.A. Meanwell, *J. Med. Chem.,* 2018, **61**, 5822-5880

H.-J. Böhm et al., ChemBioChem, 2004, 5, 637-643; M. Pettersson et al., J. Med. Chem., 2016, 59, 5284-5296; B.M. Johnson et al., J. Med. Chem., 2020, 63, 6315-6386

Applications of Fluorine in Isosterism

Fluorine to Replace Hydrogen Fluorine & the Design of Higher Order Bioisosteres

Fluorine & Bioisosterism

https://mcconnellsmedchem.com/2024/10/07/how-big-are-your-medchem-atoms/

Fluorine-Hydrogen Bioisosterism

https://mcconnellsmedchem.com/2024/10/07/how-big-are-your-medchem-atoms/

Fluorination Patterning & Lipophilicity

H.-J. Böhm et al., ChemBioChem, 2004, 5, 637-643; K. Müller et al., J. Med. Chem., 2015, 58, 9041-9060; B. Linclau et al., J. Med. Chem., 2018, 61, 10602-10618

F & Alkyl Bioisostere Design

NC CF₃ RLM $t_{1/2}$ (min) 30 125 70 135 37 7 25 11 >400 HLM $t_{1/2}$ (min) 51 202 122 274 38 9 66 35 150

- Systematic study of metabolic stability of *tert*-butyl replacements
 6-(4-(tert-butyl)phenyl)nicotinonitrile as structural background
- CF₃-substituted cyclopropyl moiety emerged as optimal
 - effective in the context of the steroid 5α -reductase inhibitor finasteride
 - t-Bu moiety is metabolically labile
 - HLM $t_{\frac{1}{2}}$ from 63 to 114 minutes

- tBu mimics surveyed in the context of bosentan & vercirnon

 all except Cp-CF₃ are smaller than tBu based on calculated volumes

 Bosentan: Cp-CF₃ & BCP performed similarly to tBu at endothelin receptors

 CF₃ & SF₅ 10-fold less potent
- Vercirnon: all performed similarly in a CCR9 functional assay
- All showed a trend towards enhanced metabolic stability over tBu
 CF₃ & SF₅ most effective
- No significant CYP inhibitory effects observed
- ♦ Log D measurements: CF₃ < SF₅ < Cp-CF₃ < tBu < BCP</p>
- Effects on solubility varied in bosentan: reduced solubility in vercirnon
- ♦ N-H pK_a increased in the order: SF₅ < CF₃ < Cp-CF₃ < tBu ≈ BCP</p>

D. Barnes-Seeman et al., ACS Med. Chem. Lett., 2013, 4, 514-516; Curr. Topics Med. Chem., 2014, 14, 855-864; E. Carreira et al., ChemMedChem., 2015, 10, 461-469

Fluorine & Bioisosterism

β,β',β'' -Trifluoro-*tert*-butyl to Optimize a tBu Moiety

1. TsCI/pyridine Pd-catalyzed $(CH_2O)_n/Ca(OH)_2$ Ph-OH rt/72 h coupling Ph-/ THF/60-65 °C/96 h 2. CsE/DME $R = Ar \text{ or } NR_2$ 20% TBAF/120 °C 2.62 2.93 Log P 2.42 4.10 μ(D) 1.97 2.30 1.64 0.36 HO Metabolism Limited study in medicinal chemistry - synthetic access optimized Reduces lipophilicity of tBu moiety - dipole effects which are maximal at 2 F atoms - trifluoro has lower dipole but still has lowest Log P value • Preference for topographical arrangement in which F point away from each other with H atoms - stabilized by F to H electrostatic interaction Metabolic stability enhanced over tBu - metabolized by α-hydroxylation to release F⁻ $|-SF_5|$ $|-SO_2CF_3|$ $|-CF_3|$ CF₃ ⊢si ⊢S−CF₃

D. O'Hagan et al., Org. Lett., 2023, 25, 6802-6807

44.3 Å³

66.4 Å³ 75.0 Å³ 78.0 Å³ 79.2 Å³ 83.5 Å³

92.0 Å³

92.8 Å³

94.7 Å³

BIZCAS

Fluorine & **Bioisosterism**

Terminal Phenyl Mimics: γ-Secretase & PKC-θ Inhibitors

R.M. Rodríguez Sarmiento et al., J. Med. Chem., 2020, 63, 8534-8553; D.S. Mortensen et al., J. Med. Chem., 2021, 64, 11886-11903

Applications of Fluorine in Drug Design Drug-Target Interactions

Intermolecular F to C=O & F to H Interactions

J.A. Olsen *et al., ChemBioChem* 2004, **5**, 666-675; A. Shi *et al., Blood*, 2012, **120**, 4461-4469; J. Grembecka *et al., Nature Chem. Biol.*, 2012, **8**, 277-284 T. Cierpicki *et al., J. Med. Chem.*, 2015, **58**, 7465-7474; F. Diederich *et al., Angew. Chem. Int. Ed.*, 2005, **44**, 1788-1805

Multipolar Interactions

The Importance of Fluorine in PCSK9 Inhibitors Multipolar

T.J. Tucker *et al., J. Med. Chem.*, 2020, **63**, 13796-13824; 2022, **64**, 16770-16800 R.W. Newberry & R.T. Raines, *Acc. Chem. Res.*, 2017, **50**, 1838-1846; F. Diederich *et al., Angew. Chem. Int. Ed.*, 2005, **44**, 1788-1805

The Effects of Fluorine: Reduced Potency

Fluorine & Potency

G. Milanole et al., Org. Lett., 2015, 17, 2968-2971; X. Wang et al., J. Med. Chem. 2017, 60, 4458-4473

The Effects of Fluorine: Dissociation t_{1/2} in PGD₂

CRTH2 = chemoattractant receptor-homologous molecule expressed on T_H2 cells

M. Andrés et al., Bioorg. Med. Chem. Lett., 2014, 24, 5111-5117; D.A. Sykes et al., Mol. Pharmacol., 2016, 89, 593-605; L. Wang et al., Mol. Cell, 2018, 72, 48-59

Fluorine & DFG Loop in Aurora Kinase Inhibitors

- Aurora A kinase inhibitors
 - NH-pyrimidine hinge binder
- F-phenyl homologue 2x more potent than prototype
 - potency further enhanced by F-pyrimidine
- X-ray cocrystal structure revealed different binding modes
 DFG loop in the active "in" conformation for prototype
- DFG loop flips to the inactive "out" conformation in F derivatives
 - 100° rotation around the Ala₂₇₃ amide bond
 - also seen with Cl, Br, C≡N

- CI, Br, CN substituents had same effect

 CF₃, CF₃O behaved like prototype: not steric in origin

 Attributed to an effect of the C-X dipole

 F is 3.8 Å away from Ala₂₇₃ CH₃
 colinear alignment

 Interpretation: induces a dipole in the Cα-Cβ bond

 transmits to amide C=O
 - facilitates rotation to align dipoles in favorable fashion
- M.P. Martin et al., ACS Chem. Biol., 2012, 7, 698-706

Ar-CF₃ & Tetrel Bonding

X. García-LLinás *et al., J. Phys. Chem. A,* 2017, **121**, 5371-5376; Z. Konteatis *et al., ACS Med. Chem. Lett.*, 2020, **11**, 101-107 W.L. Jorgensen *et al., Bioorg. Med. Chem. Lett.*, 2016, **26**, 2764-2767

MEP = molecular electrostatic potential

Fluorine for Hydrogen: Conformation

The Gauche Effect: Proline/Pyrrolidine Conformation

F = OH **DPP4** Inhibitor **FAP** Inhibitor **Thrombin Inhibitor** ∆E (gauche/anti) F trans F cis to CN 1.0 kcal/mole F cis to CN P₁ to CO.NH CO.NHR HoN 1.6 kcal/mole -ÑH₂ DPP-4 IC₅₀ (nN R' R R thrombin K_i (nM) R Н Н 1.5 Н 0.6 Н CO.NHR 1.8 kcal/mole F 0.6 (C^γ-endo) н F 0.37 (C^v-exo) Н 290 (C^v-exo) F 110 (C^v-endo) F Н Н F F F 0.8 F 3.6 C^y-endo 5.8 kcal/mole Stereochemical preference inverts at P₂ danicopan: factor D inhibitor C-4 Fluorination increases paroxysmal nocturnal haemoglobinuria Approved in Japan, January 2024; US March 2024 - cis-4-F ((S)-isomer) than trans-4-F ((R)-isomer, m F cis to CN F trans to CN - SAR reproduced in FAP inhibitors Hyperconjugation Thrombin SAR is the inverse σ C-H donates to σ *C-F - P_2 not P_1 ? – inverted binding topology? `CN CN **Electrostatic Effect** Not a steric effect: 4,4-diF retains potency C-Fδ⁻ to C-N δ⁺ in F-NH₃⁺ - cis-(S)-4-F stabilizes C^y-endo pucker **Dipole Alignment** - trans-(R)-4-F stabilizes C^y-exo pucker C⁷-endo C^γ-exo C⁷-endo C^γ-exo strong C-F dipole F mimics effect of OH in collagen F/N gauche F/N gauche - originally considered to be H-bond effect - electronic effect on conformation of Pro ring

H. Fukushima *et al., Bioorg. Med. Chem.*, 2004, **12**, 6053-6061; K. Jansen *et al., J. Med. Chem.*, 2014, **57**, 3053-3074; D.D. Staas *et al., Bioorg. Med. Chem.*, 2006, **14**, 6900-6916 R.T. Raines *et al., Protein Sci.*, 2003, **12**, 1188-1194; *J. Am. Chem. Soc.*, 2001, **123**, 777-778; 2003, **125**, 9262-9263

NuArq Me Consulti

Fluorine & Conformation

F & Conformation – GABA & Capsaicin

 $\bullet \alpha$ -Fluoro capsaicin isomers synthesized in optically pure form trans conformation favored: -CO2 - 6 kcal/mol over gauche & 8 kcal/mole over cis -O2CH Stabilized by intramolecular interactions NH₂ NHa 3F-GABA (R) - C-F/C=O dipole alignment disfavored - electrostatic interaction between $F(\delta^{-})$ & NH (δ^{+}) .CO2 Both enantiomers performed similarly as agonists at the TRPV1 receptor - suggests extended bound conformation accessible to both disfavored 3F-GABA (S) А В С gauche effect H₂CC GABA_c & **GABA** receptor transaminase trans 0 kcal/mol extended Both enantiomers of 3-F GABA synthesized H₃CO - pK_a = 8.95 & 3.30; pK_a for GABA = 10.35 & 4.05 Ĥ**≁**-Ĥ - preserves the zwitterionic nature of GABA gauche ◆ F-NH₃⁺ gauche interaction favored 6 kcal/mol - extended conformation predominates in solution (¹H-NMR) ◆ Each enantiomer interacted similarly with GABA_A receptor H₂CO H₂CO. - extended conformer B recognized by GABA_A \bullet (*R*)-isomer exhibited higher affinity for GABA_C & transaminase cis 8 kcal/mol - conformer C recognized by GABA_C & transaminase orthogonal N-H to F interaction

D. O'Hagan et al., ChemBioChem, 2007, 8, 2265-2274; Chem. Commun., 2011, 47, 7956-7958; D. O'Hagan et al., ChemBioChem, 2009, 10, 823-828

Fuorine & Conformation

F to NH & Conformation – CGRP & GPR119

Fluorine & Conformation

C.A. Stump et al., Bioorg. Med. Chem. Lett., 2010, 20, 2572-2576

Z.Yang et al., Bioorg Med. Chem. Lett., 2013, **23**, 1519-1521 T. Koshizawa et al., Bioorg Med. Chem. Lett., 2017, **27**, 3249-3253

Fluorine-Sulfur Interactions in SMN2 Splicing Modulators

B. Hurley et al., J. Med. Chem., 2021, 64, 4744-4761; N.A. Meanwell et al., J. Med. Chem., 2015, 58, 4383-4438

F & Conformation – Aryl Ethers

W.J. Hehre et al., JACS, 1972, 94, 1496-1504; K.A. Brameld et al., J. Chem. Inf. Model., 2008, 48, 1-24; D.B. Horne et al., Tet. Letts., 2009, 50, 5452-5455; L. Xing et al., ChemMedChem, 2015, 10, 715-726; M.A Massa et al., BMCL, 2001, 11, 1625-1628; E.J. Reinhard et al., J. Med. Chem., 2003, 46, 2152-2168; J. Liu et al., J. F. Chem., 2022, 257-258, 109978

Fluorine for Hydrogen: Compound Developability

Effects on Solubility, Membrane Permeability,

CYP Inhibition, Metabolism & Pharmacokinetic Properties

The Effects of Fluorine: Solubility

A.P. Degnan *et al., J. Med. Chem.,* 2008, **51**, 4858-4861; J. Velcicky *et al., ACS Med. Chem. Lett.*, 2018, **9**, 392-396; F. Yokokawa *et al., ACS Med. Chem. Lett.*, 2013, **4**, 451-455 Z. Chen *et al., Org. Lett.*, 2010, **12**, 4376-4379

Fluorine & Solubility

F for H: Membrane Permeability

- P-gp efflux an issue for CNS penetration

Two series of BACE inhibitors

Fluorine & Membrane Permeability

OH

D.J.P. Pinto et al., J. Med. Chem., 2001, 44, 566-578; B.-M. Swahn et al., J. Med. Chem., 2012, 55, 9346–9361; M.W. Weiss et al., J. Med. Chem., 2012, 55, 9009-9024 A. Ciulli et al., J. Med. Chem., 2018, 61, 599-618

CF₃ Moiety at P4 in HCV NS3 Protease Inhibitors

L.-Q. Sun et al., J. Med. Chem., 2016, 59, 8042-8060; A. Akbar et al., J. Med. Chem., 2021, 64, 11972–11989; J. Zephyr et al., J. Mol. Biol., 2022, 434, 167503

CF₃ Moiety at P4 in HCV NS3 Protease Inhibitors

L.-Q. Sun et al., J. Med. Chem., 2020, 63, 14740-14760; A. Akbar et al., J. Med. Chem., 2021, 64, 11972–11989; J. Zephyr et al., J. Mol. Biol., 2022, 434, 167503

Fluorination to Reduce Metabolism - Milvexian

W. Yang et al., J. Med. Chem., 2020, 63, 7226-7242; A.K. Dilger, J.R. Corte, W.R. Ewing et al., J. Med. Chem., 2022, 65, 1770-1785; J.I. Weitz et al., N. Engl. J. Med., 2021, 385, 2161-2172

Fluorinated Cyclopropyl Carboxamides – BTK

J.J. Crawford et al., ACS Med. Chem. Lett., 2020, 11, 1588-1597

F for H to Modulate Metabolism

FAAH = fatty acid amide hydrolase

W.C. Rose *et al., Cancer Chemother. Pharmacol.*, 2006, **58**, 73-85; J.M. Keith *et al., ACS Med. Chem. Lett.*, 2015, **6**, 1204-1208 D. Traschel *et al., Chem. Biodivers.*, 2006, **3**, 326-336; F. Van Goor *et al., Proc. Natl. Acad. Sci. USA*, 2011, **108**, 18843-18848

Fluorination Patterning in an Inhibitor of HIF-2α

R. Xu et al., J. Med. Chem., 2019, **62**, 6876-6893; C. Xie et al., Drug Metab. Dispos., 2018, **46**, 336-345; K. Müller et al., J. Med. Chem., 2015, **58**, 9041-9060 P.M. Wehen et al., Med. Chem. Res. 2023, **32**, 1510- 531

F & Drug Metabolism - Felbamate

- ◆ Clinical utility of felbamate limited by aplastic anemia & hepatotoxicity
- Atropaldehyde is potently electrophilic & toxic to fibroblasts
 thiol adducts found in rat & human urine
- Strategic deployment of F based on detailed understanding of metabolic pathway
 - F atom of fluorofelbamate prevents elimination of carbamate moiety
 - atropaldehyde not formed

C.M. Dieckhaus et al., Chem. Biol. Interact., 2002, 142, 99-117; 2002, 142, 119-1324; R.J. Parker et al., Chem. Res. Toxicol., 2005, 18, 1842-1848

Fluorine & Metabolism

Applications of Fluorine in Drug Design Modulating Amine Basicity

F & Amine Basicity – Additive Effects

		F N H	F	F F N	F N H	C N H	O O S H
σ bond path		γ-F	β-F	γ-F	β-F		
1		-0.7	-1.7	-1.4	-3.4		
σ bond path		γ-F	δ-F	γ-F	δ-F		
2		-0.7	-0.3	-1.4	-0.6		
predicted $\Delta p K_a$		-1.4	-2.0	-2.8	-4.0		
observed pK_a	11.1	9.4	9.3	8.5	7.4	8.5	5.4
observed $\Delta p K_a$		-1.7	-1.8	-2.6	-3.7		

	_N _{t∽J} CH _x F _y						
n	Position	$\Delta p K_a$					
1	β-F	-1.7					
2	γ-F	-0.7					
3	δ-F	-0.3					
4	ε-F	-0.1					

4,4,-diF piperidine ≡ morpholine

- Effects of F on pK_a of aliphatic amines determined experimentally - pK_a varies based on relative position of F, # of F atoms
- In ring systems, F affects pK_a via both bond paths
 add effects from each bond path to calculate ΔpK_a
- Allows reasonable approximation of change in basicity
 based on F & N relationship
- However, equatorial/axial disposition on cyclohexane ring affects ΔpK_a
 equatorial F has greater effect than axial F ~ 1 pK_a unit

F. Diederich, K. Müller et al., ChemMedChem., 2007, 2, 1100-1115; K. Müller et al., ChemMedChem, 2007, 2, 285-287

Fluorine & Amine Basicity

F to Reduce Basicity in KSP Inhibitors – P-gp

Fluorine & Amine Basicity

C.D. Cox et al., J. Med. Chem., 2008, 51, 4239-4252; Bioorg. Med. Chem. Lett., 2007, 17, 2697-2702

F to Reduce Basicity & hERG

Fluorine & Amine Basicity

Fluorination to Reduce hERG in mGluN2B NAMs

L.R. Marcin et al., ACS Med. Chem. Lett., 2018, 9, 472-476; L.J. Bristow et al., J. Pharmacol. Exp. Ther., 2017, 363, 377-393; J. Kempson et al., Org. Proc. Res. Dev., 2018, 22, 846-855

F to Modulate Basicity & Selectivity

Fluorine & Amine Basicity

C. Stein et al., Science, 2017, 355, 966-969; G. Grunewald et al., J. Med. Chem., 2006, 49, 2939-2952

Fluorine & the Design of Amide Bioisosteres

Fluorine & Amide Mimesis

Fluorine & Higher

Order Bioisosterism

CF₃-CR₂-N as an Amide Bioisostere: BACE-1 & FXIa

C.R Butler et al., J. Med. Chem., 2017, 60, 386-402; T. Fang et al., Bioorg. Med. Chem. Lett., 2020, 30, 126949

Vinyl-F & Aryl C-F as a C=O Mimic: DPP4 Inhibitors

Vinyl-F/Amide Bioisosterism: Thrombin & Enkephalins

M.R. Player *et al.*, *BMCL*, 2007, **17**, 6266-6269; 2008, **18**, 2865-2870; P. Wipf *et al.*, *JOC*, 1998, **63**, 6088-6089; Y.L. Dory *et al.*, *ACS Chem. Neurosci.*, 2017, **8**, 40-49 M. Zanda *et al.*, *ChemMedChem*, 2009, **4**, 1416-1420; G.P. Möller *et al.*, *Org. Lett.*, 2017, **19**, 2510-2513; R.A. Altman *et al.*, *ChemMedChem*, 2017, **12**, 571-576

Aromatic F as C=O Mimic in Cyclic Amides

G.N. Anilkumar et al., Bioorg. Med. Chem. Lett., 2011, 21, 5336-5341; J.W. Kong et al., Bioorg. Med. Chem. Lett., 2000, 10, 411-414

 $C-F \equiv C=O$

End of Part 1

